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In a companion paper, Ulitsky & Collins (2000) applied the eddy-damped quasi-
normal Markovian (EDQNM) turbulence theory to the mixing of two inert passive
scalars with different diffusivities in stationary isotropic turbulence. Their paper
showed that a rigorous application of the EDQNM approximation leads to a scalar
covariance spectrum that violates the Cauchy–Schwartz inequality over a range of
wavenumbers. The violation results from the improper functionality of the inverse
diffusive time scales that arise from the Markovianization of the time evolution of
the triple correlations. The modified inverse time scale they proposed eliminates this
problem and allows meaningful predictions of the scalar covariance spectrum both
with and without a uniform mean gradient.

This study uses the modified EDQNM model to investigate the spectral dynamics of
differential diffusion. Consistent with recent DNS results by Yeung (1996), we observe
that whereas spectral transfer is predominantly from low to high wavenumbers,
spectral incoherence, being of molecular origin, originates at high wavenumbers
and is transferred in the opposite direction by the advective terms. Quantitative
comparisons between the EDQNM model and the DNS show good agreement. In
addition, the model is shown to give excellent estimates for the dissipation coefficient
defined by Yeung (1998).

We show that the EDQNM scalar covariance spectrum for two scalars with different
molecular diffusivities can be approximated by the EDQNM autocorrelation spectrum
for a scalar with molecular diffusivity equal to the arithmetic mean of the first two
scalars. The result is exact for the case of an isotropic scalar and is shown to be
a very good approximation for the scalar with a uniform mean gradient. We then
exploit this relationship to derive a simple formula for the correlation coefficient of
two differentially diffusing scalars as a function of their two Schmidt numbers and the
turbulent Reynolds number. A comparison of the formula with the EDQNM model
shows the model predicts the correct Reynolds number scaling and qualitatively
predicts the dependence on the Schmidt numbers.

To investigate the degree of local versus non-local transfer of the scalar covariance
spectrum, we divided the energy spectrum into three ranges corresponding to the
energy-containing eddies, the inertial range, and the dissipation range. Then, by
conditioning the scalar transfer on the energy contained within each of the three
ranges, we have determined that the transfer process is dominated first by local
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interactions (local transfer) followed by non-local interactions leading to local transfer.
Non-local interactions leading to non-local transfer are found to be significant at the
higher wavenumbers. This result has important implications for defining simpler
spectral models that potentially can be applied to more complex engineering flows.

1. Introduction
Models of non-premixed flames often make the assumption that the molecular and

thermal diffusivities of all of the reacting species are equal. This simplification, referred
to in the literature as the unity Lewis number assumption, is extremely attractive.
It ultimately leads to a Shvab–Zeldovich conserved scalar formulation (Williams
1985) that reduces the calculation of species concentrations in the flame to that of
a single scalar (the mixture fraction), regardless of the complexity of the chemistry
or the number of species. However, there is growing experimental evidence (Bilger &
Dibble 1982; Drake, Pitz & Lapp 1986; Kerstein et al. 1989; Chen, Bilger & Dibble
1990; Vranos et al. 1992) that so-called differential diffusion may be important at
low-to-moderate Reynolds numbers. Differential diffusion refers to effects associated
with differences in the molecular diffusivities of the reacting species. Unfortunately,
differential diffusion cannot be captured by the conserved scalar approximation, and
therefore we must resort to a full description of all of the reacting species to properly
account for this phenomenon.

Initial studies of differential diffusion focused primarily on the decorrelation of
inert passive scalars. Experiments (Kerstein et al. 1989; Smith et al. 1995a; Saylor
& Sreenivasan 1998) and direct numerical simulations (Yeung & Pope 1993; Yeung
1996; Nilsen & Kosály 1997) found that differential diffusion, being of molecular
origin, is initiated at high wavenumbers. Owing to an inverse cascade of ‘incoherence,’
however, it is ultimately manifested at lower wavenumbers. Yeung (1996) used DNS
to investigate the detailed behaviour of the different classes of triadic interactions that
are responsible for the inverse cascade of incoherence. Previously, this type of spectral
analysis of the transfer process had only been applied to the Navier–Stokes equations
(Domaradzki & Rogallo 1990; Zhou 1993a,b; Brasseur & Wei 1994). Yeung (1996)
observed that transfer of the covariance spectrum was dominated by local transfer,
although non-local interactions were significant.

Another important question addressed by these studies is how differential diffusion
scales with Reynolds number. The argument is often made that at high Reynolds
numbers, molecular effects are confined to high wavenumbers and thus have a small
effect on single-point quantities of interest. Kerstein, Cremer & McMurtry (1995)

proposed that the variance of the relative scalar fluctuation should scale like Re
−1/2
L ,

where ReL is the Reynolds number based on the integral length scale. This hypothesis
was corroborated by the DNS study of Nilsen & Kosály (1997).

Differential diffusion in reacting flows shows a similar phenomenology (Smith et al.
1995b; Jaberi et al. 1997; Nilsen & Kosály 1999), although it appears that reactions
increase the magnitude of the effect. This is most probably due to an increase in scalar
gradients that accompanies depletion of the reactant species. However, one puzzling
result that has yet to be fully explained is the Reynolds number scaling observed by
Smith et al. (1995b). In contrast to the mixing study by the same authors (Smith et al.
1995a), the reacting jet did not show a lessening of differential diffusion with increasing
Reynolds number. This suggests that there may be something fundamentally different
about the reacting system that is not captured by the inert studies.
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The most popular models of non-premixed flames are based on a probability
density function (p.d.f.) of the scalar species and temperature (Pope 1985; Girimaji
1991, 1992; Fox 1992). The strength of the p.d.f. model lies in its exact treatment
of advection and of the highly nonlinear reaction terms. However, the p.d.f. has
difficulty describing differential diffusion because the diffusive terms in the p.d.f.
equations are modelled. Moreover, as differential diffusion is predominantly a small-
scale phenomenon, it is difficult for a single-point description such as the p.d.f. to
capture this effect.

In contrast, spectral models are inherently capable of describing differential dif-
fusion accurately, since it is advection that is modelled whereas diffusion is treated
exactly. Fox (1992) recently extended the Lagrangian spectral relaxation model (Fox
1995, 1997) to treat differential diffusion of non-reacting scalars. The model was able
to reproduce several of the features found in the unpublished DNS by Yeung. The
alternative approach taken in this study is based on the EDQNM (eddy damped
quasi-normal Markovian) theory. The EDQNM theory was developed by Orszag
(1970) as a correction to the quasi-normal approximation of Millionshtchikov (1941)
that was shown to yield unrealizable spectra (O’Brien & Francis 1962; Ogura 1963).
The theory has proved to be effective for investigating turbulent energy spectra (André
& Lesieur 1977; Lesieur 1987) and passive scalar spectra (Vignon & Cambon 1980;
Herring et al. 1982; Nakauchi, Oshima & Saito 1989; Herr, Wang & Collins 1996).
In a companion study (Ulitsky & Collins 2000 hereinafter referred to as UC), the
EDQNM model was derived for the scalar covariance spectrum for two scalars with
different molecular diffusivities both with and without a uniform mean gradient. The
main result of that work was that a straightforward application of the EDQNM
theory produces a model for the scalar covariance spectrum that does not satisfy
the Cauchy–Schwartz inequality over a range of wavenumbers. Upon further inves-
tigation, it was found that the problem originates with the inverse diffusive time
scales in the triple correlations after Markovianization. UC modified these inverse
time scales so that they were no longer explicit functions of the scalar molecular
diffusivities. The modified EDQNM model for the isotropic scalars was shown to
be realizable via a Langevin equation analysis, while the modified model for the
anisotropic scalars produced realizable results for all time and for all values of the
parameters attempted.

In the present study, we apply the modified EDQNM model to differentially
diffusing, inert passive scalars. The investigation is similar to the one by Yeung
(1996), except that we use a spectral model in place of DNS. An important advantage
of the model is that it involves only averaged quantities, and thus eliminates the
statistical noise associated with DNS and simplifies the interpretation of the results.
Section 2 gives a summary of the modified EDQNM model, which is then compared
to DNS in § 3. Section 4 explores a simplified model for the scalar covariance
spectrum when the ratio of the Schmidt numbers is within an order of magnitude.
The result is used to derive a simple formula for the correlation coefficient. Section 5
discusses the Reynolds number scaling of differential diffusion. We show that several
single-point and spectral quantities can be collapsed when plotted in the appropriate
coordinates. In § 6, we determine whether the advective transfer process is governed
by local or non-local triadic interactions and whether the overall transfer process
is local or non-local. The answers to these questions have important implications
for constructing simpler and more flexible spectral models that can be more easily
extended to inhomogeneous flows. Finally, the findings of the study are summarized
in § 7.
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2. EDQNM model equations
A complete development of the EDQNM model equations can be found in UC;

thus, here, we simply present the equations. We consider the advection and diffusion
of two (or more) passive scalars by isotropic turbulence. For the sake of simplicity,
we restrict our attention to velocity fields that are mirror-symmetric or equivalently
helicity free (an in-depth discussion on helicity in turbulence can be found in Lesieur
1987). The equation governing each scalar is given by

∂φα

∂t
+

∂

∂xi
(uiφα) = Dα

∂2φα

∂xi∂xi
, (2.1)

where φα is the local concentration of species α, ui is the Navier–Stokes velocity,
and Dα denotes the molecular diffusivity. As the turbulence is isotropic, we assume,
without loss of generality, that there is zero mean flow (Hinze 1975; Lesieur 1987);
thus, after a Reynolds decomposition, ui = u′i. A similar equation for φβ can be
written by analogy.

2.1. Isotropic scalar

First, we consider the example of two coherently forced isotropic scalars. Coherent
forcing is done by introducing identical, stochastic source terms into the scalar
equations. The scalar forcing is applied to wavenumbers less than

√
2, and uses an

algorithm that is similar to that used for the energy (see Eswaran & Pope 1988
for details). In the absence of differential diffusion, both scalars would remain equal
under the present forcing, and so the statistical separation of the two scalars is a
direct measure of differential diffusion. For this case, we assume (again without loss
of generality) that the mean scalar concentration is zero; thus, we have φα = φ′α. The
governing equations for each scalar can be made dimensionless by using the integral
length scale of the turbulence L (for xi), the r.m.s. fluctuating velocity u′ (for u′i), and
the large eddy turnover time L/u′ (for t). Characteristic scalar fluctuations then can
be defined in terms of the scalar dissipation rates

χα = 2Dα∇φ′α · ∇φ′α, (2.2)

χβ = 2Dβ∇φ′β · ∇φ′β, (2.3)

χαβ = (Dα +Dβ)∇φ′α · ∇φ′β, (2.4)

yielding (χαL/u
′)1/2 and (χβL/u

′)1/2 (for φ′α and φ′β , respectively). The resulting dimen-
sionless equations become

∂φ′α
∂t

+
∂

∂xi
(u′iφ

′
α) =

1

Peα

∂2φ′α
∂xi∂xi

, (2.5)

∂φ′β
∂t

+
∂

∂xi
(u′iφ

′
β) =

1

Peβ

∂2φ′β
∂xi∂xi

, (2.6)

where Peα, the mass transfer Péclet number, is defined in terms of the Reynolds and
Schmidt numbers (ReL = u′L/ν and Scα = ν/Dα) as Peα = ReLScα. The definitions
of Scβ and Peβ follow by analogy. Also note that in order to maintain a reasonable
nomenclature, the same variables (e.g. xi, t, u

′
i and φ′) have been used to represent

dimensionless and dimensional quantities. Since all subsequent equations will be
expressed in dimensionless form (except where noted), this practice should not cause
any confusion.
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The relevant correlations for isotropic scalars are

Bα(x1, x2) ≡ φ′α(x1)φ′α(x2), (2.7)

Bβ(x1, x2) ≡ φ′β(x1)φ
′
β(x2), (2.8)

Bαβ(x1, x2) ≡ φ′α(x1)φ
′
β(x2). (2.9)

From the definition of the Fourier transform,

Bi(k, p) ≡
∫∫

Bi(x1, x2) exp(−I(k · x1 + p · x2)) dx1 dx2, (2.10)

and its inverse,

Bi(x1, x2) ≡
∫∫

Bi(k, p) exp(+ I(k · x1 + p · x2)) d̂k d̂p, (2.11)

where I ≡ √−1, i refers to α, β or αβ, d̂k ≡ dk/(2π)3 and d̂p ≡ dp/(2π)3, it can be
shown that for an isotropic scalar spectrum

Bi(k, p) = 2δ̂(k + p)Bi(k), (2.12)

where δ̂(k) ≡ (2π)3δ(k) and δ(k) is the three-dimensional Dirac delta function. Note
that the arguments for Bi(k, p) and Bi(k) in (2.12) uniquely define the function
and its dimensional units. Bi(k) is related to the traditional scalar spectrum by
Ei
φ(k) = k2Bi(k)/π2.
The governing equation for the scalar covariance spectrum is[

∂

∂t
+

(
1

Peα
+

1

Peβ

)
k2

]
Bαβ(k) = Tr

αβ
B (k) + Fαβ(k), (2.13)

where Tr
αβ
B (k) is the transfer spectrum that is modelled by the EDQNM theory

(note ‘transfer spectrum’ refers to the nonlinear advective term in the equation for
Bαβ(k)) and Fαβ(k) is the low-wavenumber forcing function for the scalar energy that
corresponds to the coherent source term in the scalar field equations. Equations for
the two autocorrelation spectra, Bα(k) and Bβ(k), are obtained from (2.13) by setting
β equal to α or vice versa. The EDQNM model for the transfer function is

TriB(k) =

∫ ∫
∆

[g(k, p, q)E(p)Bi(q)− g(q, p, k)E(p)Bi(k)]θ(µpkqM ) dp dq, (2.14)

where E(k) is the turbulent energy spectrum and ∆ refers to an integration over all p
and q that form a triad with k. The geometric factor g(k, p, q) is defined as

g(k, p, q) ≡ N2k

p3q
, (2.15)

where

N2 = 1
4
((k + p+ q)(k + p− q)(p+ q − k)(q + k − p)). (2.16)

The time-dependent function, θ(γ), is given by

θ(γ) =
1− e−γt

γ
. (2.17)

UC showed that the inverse time scale, µpkqM , that comes out of the standard Markov-
ianization procedure produces an unrealizable covariance spectrum. The mathematical
argument in UC, based on a Langevin equation analysis, rigorously proved that the
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inverse time scale must be independent of the scalar diffusivities to satisfy the Cauchy–
Schwartz condition and conservation simultaneously. A physical explanation of this
result is that scalar transfer, a convective process, should not depend explicitly upon
the scalar molecular properties, as this allows two spatially identical scalars to transfer
at different rates owing to differences in their molecular diffusivities – an impossible
result. The origin of the error appears to be the Markovianization step, where an
artificial dependence on the molecular diffusivity arises. This presents no realizability
problem for a single scalar; however, for multiple scalars, the explicit dependence of
the transfer functions on the molecular diffusivities causes a violation of the Cauchy–
Schwartz condition for the scalar covariance spectrum. UC proposed the following
modified inverse time scale,

µ
pkq
M ≡ c1Mµ

p + c2M (µk + µq) +
1

ReL
(p2 + k2 + q2), (2.18)

where µk is calculated in the manner suggested by Pouquet et al. (1975)

µk =

√∫ k

0

k̃
2
E(k̃) dk̃. (2.19)

Notice that the dependence of µpkqM on the scalar diffusivity (Péclet number) is replaced
by the kinematic viscosity (Reynolds number). This modified inverse time scale yields
realizable results under all conditions.

There are two unknown constants in the model, c1M and c2M . Following the analysis
of Herring et al. (1982), the coefficients c1M and c2M are assigned values of 0.36.

2.2. Uniform mean scalar gradient

For the case of the uniform mean gradient, the analysis is complicated in two ways.
First, the reduction in symmetry implies that all correlations involving either scalar
are axisymmetric, and therefore are functions of the wavenumber (as before) and the
angle between the wavevector k and the direction of the mean gradient, here taken
to be in the x3-direction. We define the cosine of this angle as µ. Following Herring
(1974), we express this implicit dependence on µ explicitly in terms of an infinite
Legendre polynomial series. Secondly, the mean gradient creates a turbulent scalar
flux aligned along the direction of the mean gradient. This introduces two coupled
scalar–velocity correlations that must be solved for simultaneously.

The non-dimensional equations for each scalar fluctuation become

∂φ′α
∂t

+
∂

∂xi
(u′iφ

′
α) + u′3 =

1

Peα

∂2φ′α
∂xi∂xi

, (2.20)

∂φ′β
∂t

+
∂

∂xi
(u′iφ

′
β) + u′3 =

1

Peβ

∂2φ′β
∂xi∂xi

, (2.21)

where we now non-dimensionalize the scalar fluctuations φ′α and φ′β by the character-
istic scalar fluctuation ΓαL and ΓβL, respectively, where Γα and Γβ are the magnitudes
of the mean gradient of each species.

In addition to the two-point correlations identified in (2.7)–(2.9), the autocorrelation
and covariance spectra in the presence of a uniform mean gradient will further depend
upon the following scalar–velocity correlations

Qαi (x1, x2) ≡ u′i(x1)φ′α(x2), (2.22)

Q
β
i (x1, x2) ≡ u′i(x1)φ

′
β(x2). (2.23)
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For the mirror-symmetric (i.e. non-helical) isotropic velocity field considered in this
study, the Fourier transform of the scalar–velocity covariance spectrum can be written
as follows (Batchelor 1946; Chandrasekhar 1950)

Qαi (k, p) = δ̂(k + p)Pi3(k)Qα(k, µ), (2.24)

where Pij(k) = δij − kikj/k2 is the projection operator and Qα(k, µ) is a real function
of the wavenumber k and angle µ. The governing equation for Qα(k, µ) is (Herr et al.
1996) [

∂

∂t
+

(
1

ReL
+

1

Peα

)
k2

]
(1− µ2)Qα(k, µ)

= −kjPi3(k)

∫∫
Tα
ij(k, p, q) d̂p d̂q − 1

2
P3ij(k)

∫∫
Tα
ij(q, p, k) d̂p d̂q︸ ︷︷ ︸

inertial transfer

−(1− µ2)R(k)︸ ︷︷ ︸
source

, (2.25)

in which Pijm(k) = kmPij(k) + kjPim(k), R(k) = 2π2E(k)/k2 and Tα
ij(k, p, q) is given by

Tα
ij(k, p, q) =

[
Tα

ij(k, p, q)− Rij3(k, p, q)

µ
kpq
R

]
θ(µkpqT ). (2.26)

The equation for Qβ(k, µ) follows by analogy. Expressions for Tα
ij(k, p, q) and

Rij3(k, p, q) are given in table 1. The coefficient µkpqR retains its classical definition

µ
kpq
R = cR(µk + µp + µq) +

1

ReL
(k2 + p2 + q2), (2.27)

whereas the modified coefficient µkpqT suggested by UC is

µ
kpq
T = c1T (µk + µp) + c2Tµ

q +
1

ReL
(k2 + p2 + q2), (2.28)

in which the explicit dependence on the Péclet number has again been removed.
The anisotropic scalar covariance spectrum, Bαβ(k, µ), is governed by[
∂

∂t
+

(
1

Peα
+

1

Peβ

)
k2

]
Bαβ(k, µ) = −ki

∫∫
1
2
[Mαβ

i (p, k, q) +M
βα
i (p, k, q)] d̂p d̂q︸ ︷︷ ︸

inertial transfer

− 1
2
(1− µ2)[Qα(k, µ) + Qβ(k, µ)]︸ ︷︷ ︸

source

, (2.29)

where

M
αβ
i (k, p, q) =

[
Ri33(k, p, q)

µ
kpq
R

−Tβ
i3(k, p, q)

]
ξ(µkpqT , µ

kpq
M )

+

[
Ri33(k, q, p)

µ
kqp
R

−Tα
i3(k, q, p)

]
ξ(µkqpT , µ

kpq
M )

+Mαβ
i (k, p, q)θ(µkpqM ), (2.30)
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Rij3(k, p, q) {−Piab(k)Pja(p)Pb3(q)R(p)R(q)− Pjab(p)Pia(k)Pb3(q)R(k)R(q)

−P3ab(q)Pia(k)Pjb(p)R(k)R(p)} δ̂(k + p + q)

Tα
ij(k, p, q) {−Pjab(p)Pia(k)Pb3(q)Qα(q, µ′′)R(k)− Piab(k)Paj(p)Pb3(q)Qα(q, µ′′)R(p)

−qnPin(k)Pj3(p)Qα(p, µ′)R(k)− qnPjn(p)Pi3(k)Qα(k, µ)R(p)}
δ̂(k + p + q)

Tβ
ij(k, p, q) {−Pjab(p)Pia(k)Pb3(q)Qβ(q, µ′′)R(k)− Piab(k)Paj(p)Pb3(q)Qβ(q, µ′′)R(p)

−qnPin(k)Pj3(p)Qβ(p, µ′)R(k)− qnPjn(p)Pi3(k)Qβ(k, µ)R(p)}
δ̂(k + p + q)

Mαβ
i (k, p, q) {−2pjPij(k)R(k)Bαβ(q, µ′′)− 2qjPij(k)R(k)Bαβ(p, µ′)

−pjPi3(k)Pj3(q)Qα(k, µ)Qβ(q, µ′′)− qjPi3(k)Pj3(p)Qβ(k, µ)Qα(p, µ′)

−Piab(k)Pa3(p)Pb3(q)Qα(p, µ′)Qβ(q, µ′′)} δ̂(k + p + q)

Table 1. Explicit representation of triple correlations.

Mαβ
i (k, p, q) is given in table 1, µkpqM is defined in (2.18), and the new time-dependent

function, ξ(γ, δ), is given by

ξ(γ, δ) =


1

γ

[
1− e−δt

δ
+

e−γt − e−δt

γ − δ
]
, γ 6= δ,

1

γ

[
1− e−γt

γ
− te−γt

]
, γ = δ.

(2.31)

Equations for Bα(k, µ) and Bβ(k, µ) follow by analogy.
Application of the Legendre expansion for the µ dependence (Herring 1974) yields

an infinite series; however, Herr et al. (1996) showed that for the conditions of this
calculation, Qj(k, µ) is isotropic (i.e. Qj(k, µ) = Qj(k), where j is α or β). This reduction
assumes the scalar fluctuations are initially zero and subsequently arise soley from the
presence of the uniform mean gradient. Under this circumstance, the µ dependence in
the Qj(k, µ) equation cancels out because each of the transfer and source terms has
the same (1− µ2) dependence. Likewise, the Legendre expansion for the scalar–scalar
spectra are limited to the first two terms, i.e. Bi(k, µ) = Bi0(k) + Bi2(k)(3µ

2 − 1)/2
(where i is α, β or αβ); higher-order terms in the series are identically zero. By taking
advantage of the orthogonal properties of Legendre polynomials, it is possible to
derive separate equations for Bi0(k) and Bi2(k) (see Herr et al. 1996 for details).

For consistency with the earlier work, the coefficients are assigned the following
values: cR = c1M = c2M = 0.36. As discussed extensively in Herr et al. (1996),
the constants that arise in the Q-equation, c1T and c2T , are not constrained by a
conservation principle. Instead, they are determined by fitting to experimental or
DNS data. Comparisons with DNS, presented in § 3.2, suggest a better overall fit is
obtained using c1T = 0 and c2T = 0.83.

2.3. Statistical quantities of interest

The equations for Bα(k), Bβ(k) and Bαβ(k) for the forced isotropic scalar and Bα0(k),

B
β
0 (k), Bαβ0 (k), Bα2(k), Bβ2 (k), Bαβ2 (k), Qα(k) and Qβ(k) for the case of the mean gradient

were integrated numerically on a uniform grid with either 64 or 256 wavenumbers
(corresponding respectively to a direct numerical simulation with 1283 or 5123 points
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in the physical domain). Details of the numerical method can be found in Herr et al.
(1996).

We focus mainly on single-point and spectral properties of the scalar fields. The
scalar spectrum is defined as

Ei
φ(k) ≡ 1

(2π)3

∫ ∫
Bi(k, p) d̂p k2 dΩk =

k2Bi0(k)

π2
, (2.32)

where dΩk is the solid angle for wavevector k and the subscript 0 on the far right-hand
side is suppressed for the isotropic scalar. The scalar–velocity spectrum that arises in
the case of the uniform mean gradient is defined as

E
j
Q(k) ≡ 1

(2π)3

∫ ∫
Q
j
3(k, p) d̂p k2 dΩk =

Qj(k)k2

3π2
. (2.33)

We can calculate the scalar fluctuation intensity by

Φirms =

(∫ kmax

0

Ei
φ(k) dk

)1/2

, (2.34)

and the turbulent scalar flux in the direction of the mean gradient by

u′3φ′α =

∫ kmax

0

Eα
Q(k) dk. (2.35)

Following Yeung (1996), we define a correlation coefficient in the following manner

ρ̃ ≡
(
Φαβrms

)2

ΦαrmsΦ
β
rms

. (2.36)

The spectral equivalent is the coherency spectrum (normalized spectral scalar covari-
ance spectrum), which is computed according to

ρ(k) =
E
αβ
φ (k)√

Eα
φ(k)Eβ

φ(k)
. (2.37)

3. Comparison with DNS
In this section, we present comparisons of the modified EDQNM model with DNS

for both the isotropically forced scalar and the scalar with a uniform mean gradient.
The simulations were similar to earlier ones performed in our group (e.g. see Herr
et al. 1996), hence, we will present only an overview of the numerical method and
refer the interested reader to the original source for details. The Navier–Stokes and
scalar transport equations were integrated in three spatial dimensions and time using
a pseudospectral algorithm on a 1283 grid. The turbulent energy was made stationary
by forcing wavenumbers less than

√
2 using an algorithm similar to Eswaran & Pope

(1988). The initial velocity field and forcing were fixed for all of the simulations. We
calculated an energy spectrum by averaging the instantaneous spectrum over 30 eddy
turnover times at one eddy turnover time intervals. This energy spectrum is shown in
figure 1 and the pertinent parameters are summarized in table 2.

Rather than solve for the energy spectrum using the EDQNM model, we substitute
the average energy spectrum obtained from the DNS, thereby eliminating a possible
source of error. In addition to the turbulence parameters, the Schmidt number for
each scalar field must be defined. Three combinations of Schmidt numbers have been
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Figure 1. Average turbulent energy spectrum shown in Kolmogorov-compensated coordinates, in
which ε is the dissipation rate and η ≡ (ν3/ε)1/4 is the Kolmogorov length scale. The spectrum was
obtained by averaging 30 instantaneous spectra at one eddy turnover time intervals.

Parameter Definition Value

u′ Turbulence intensity 1.00
ε Dissipation rate 0.33
ν Kinematic viscosity 6.3× 10−3

L Integral length scale 1.51
λ Taylor microscale 0.53
η Kolmogorov length scale 0.03
Te Eddy turnover time 1.51
ReL Reynolds number (integral scale) 239
Reλ Reynolds number (Taylor microscale) 85
kmaxη Resolution criterion 1.78

Table 2. Turbulence parameters associated with the energy spectrum in arbitrary units
(except for the last three quantities which are dimensionless).

considered and they are designated as case (i): Scα = 1 and Scβ = 1
4
; case (ii): Scα = 1

and Scβ = 1
16

; and case (iii): Scα = 1
4

and Scβ = 1
16

.

3.1. Isotropic scalar

Recall that the isotropic scalar field arises from a coherent source term in the scalar
equations. Even though the source for each scalar is identical, the forcing delivered
to the scalar spectra, Fα(k), Fβ(k) and Fαβ(k), are not necessarily the same owing
to differences in the correlation of the source with each scalar. We therefore must
set Fα(k), Fβ(k) and Fαβ(k) independently in the model. We are interested mainly
in comparing the steady state EDQNM predictions with stationary results from
the DNS. At steady state the dimensional forcing functions satisfy the following
constraints

1

π2

∫ kmax

0

k2Fα(k) = χα,
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Case χα χβ χαβ

(i) 0.3627 0.3544 0.3585
(ii) 0.3627 0.3201 0.3414
(iii) 0.3544 0.3201 0.3372

Table 3. Dissipation rates for isotropic scalar DNS for Scα = 1 and Scβ = 1
4

(case (i)),

Scα = 1 and Scβ = 1
16

(case (ii)), and Scα = 1
4

and Scβ = 1
16

(case (iii)).
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Figure 2. Scalar intensity (a) Φαrms, (b) Φβrms and (c) Φαβrms (see (2.34) for definitions) as a function
of dimensionless time (made dimensionless with the large eddy turnover time) for case (i) of the
forced isotropic scalar study.

1

π2

∫ kmax

0

k2Fβ(k) = χβ,

where by definition

Fαβ(k) = 1
2
(Fα(k) + Fβ(k)).

The mean scalar dissipation rates from the DNS are summarized in table 3. To be
consistent with the DNS, only the first two wavenumbers of Fα(k) and Fβ(k) are
non-zero. These constraints leave only one additional degree of freedom for each
of the forcing parameters that was used to match the integral length scale of each
autocorrelation spectrum from the DNS.

Figures 2 and 3 show a comparison of the DNS and EDQNM scalar intensities
for cases (i) and (ii), respectively. The overall agreement between the simulations and
the model is very good. Similar agreement is found for the correlation coefficient
shown in figure 4. There is some disagreement at short times, which is most probably
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Figure 3. Scalar intensity (a) Φαrms, (b) Φβrms and (c) Φαβrms as a function of dimensionless time for
case (ii) of the forced isotropic scalar study.

Case DNS EDQNM % Error

Φαrms(Sc = 1) 1.2436 1.3488 8.2
Φαrms(Sc = 1

4
) 1.1161 1.1638 4.2

Φαrms(Sc = 1
16

) 0.9836 1.0058 2.2

Φαβrms (case (i)) 1.1583 1.2333 6.4
Φαβrms (case (ii)) 1.0384 1.0915 5.1
ρ̃ (case (i)) 0.9668 0.9689 0.2
ρ̃ (case (ii)) 0.8809 0.8783 −0.2

Table 4. Comparison of averaged statistics from DNS with EDQNM model predictions for all of
the single-point quantities.

due to the mismatch in the scalar forcing over this period. A summary of all of the
single-point statistics from the model and DNS is given in table 4. We see that the
maximum error for all of the cases is 8.2%, and this occurs at Sc = 1, where the
modifications to the EDQNM model vanish. We therefore conclude that the modified
EDQNM model continues to capture single-point statistics very well.

The autocorrelation and scalar covariance correlation spectra for cases (i) and (ii)
are shown in figures 5 and 6. The DNS scalar spectra were obtained by averaging
30 instantaneous spectra separated by an eddy turnover time. Overall, the agreement
is very good, although there are some discrepancies at higher wavenumbers. At
the highest Schmidt number (Sc = 1), the EDQNM model for the autocorrelation
spectrum underpredicts the DNS at high wavenumbers (see the top graph in figure 5),



Differential diffusion of scalars 13

1.00
(a)

(b)

EDQNM
DNS

1.0

0.9

403020100

t

0.98

0.96

0.94

0.8

q̃

q̃

Figure 4. Correlation coefficient (see (2.36) for definition) for the forced isotropic scalar study as a
function of time. (a) Case (i) and (b) case (ii).

whereas at the lowest Schmidt number (Sc = 1
16

) the opposite is true (see figure 6(b)).

Not surprisingly, the agreement at the intermediate Schmidt number (Sc = 1
4
) is the

best (see figure 5(b)). The scalar covariance spectra consistently lie in between the
two autocorrelation spectra, and so their agreement with the DNS depends on the
relative agreement of the autocorrelation spectra, i.e. there is excellent agreement for
case (ii), where the autocorrelation spectra bracket the DNS, and somewhat lesser
agreement for case (i) where the DNS is consistently above the model.

Figure 7 shows the coherency spectrum defined in (2.37). Notice here there is a more
pronounced discrepancy between the EDQNM model and the DNS. Because ρ(k)
involves a ratio of spectra, it is a particularly sensitive measure of the performance
of the model. In both cases, the DNS decays more rapidly than the model at small
k, but crosses over at higher k. It is difficult to identify the origin of this discrepancy
since it could involve errors in either the autocorrelation or covariance spectrum (or
both). It is still encouraging that the agreement at low wavenumbers, where most of
the scalar energy is located, is reasonably good, despite the fact that there are no
adjustable constants in the model. It is especially encouraging that the fidelity of the
model is not compromised at low Schmidt numbers, where the changes proposed by
UC are greatest.

As a final test of the model, we consider the more traditional problem of a
freely decaying isotropic scalar. Decaying systems introduce several challenges. First,
the results are more sensitive to the initial conditions, often for all time, so care
must be taken to match the initital conditions of the model and DNS accurately.
Secondly, because the DNS is not stationary, we are no longer able to use time
averages; instead, we perform ensemble averages over six independent realizations to
reduce the statistical error. Finally, as noted by Herring et al. (1982), the long-time
behaviour of decaying scalars is sensitive to the low wavenumber end of the spectrum.
To improve the resolution of the EDQNM model at low wavenumbers, we substitute
a logarithmic grid, similar to the one used in earlier EDQNM studies (Pouquet et al.
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Figure 5. Isotropic scalar spectra for case (i). (a) Autocorrelation spectra for Sc = 1, (b) Sc = 1
4

and (c) the scalar covariance spectrum. Note that the wavenumber is made dimensionless by the
integral length scale.

1975; André & Lesieur 1977; Lesieur & Schertzer 1978; Herring et al. 1982). In this
coordinate system, node points are spaced in equal increments of ln k. This has the
effect of increasing the density of points at small wavenumbers, which improves the
accuracy of numerical evaluation of the model at long times. (Note that a comparison
of EDQNM calculations using the linear and logarithmic grids for forced scalars or
scalars with uniform mean gradients shows little sensitivity to the grid.)

We chose to investigate a close analogue of the decaying studies by Yeung & Pope
(1993). Using the same forced energy spectrum as described above, we coherently
forced two scalars with different diffusivities (case (ii): Scα = 1 and Scβ = 1

16
) for

twelve eddy turnover times, and then turned the forcing off to watch the subsequent
decay. The initial condition for the decay calculation was therefore the steady-state
correlations we just presented. The DNS was repeated six times using the same
velocity field but changing the random forcing of the scalar.

Figure 8 shows a comparison of ρ̃(t) from the DNS (dashed line) with two different
EDQNM calculations. The first EDQNM calculation (solid line) used 250 logarithmic
grid points spread over the wavenumber range 1.51 6 k 6 148. The energy spectrum
was approximated by the Pao spectrum with parameters chosen to match the DNS (i.e.
u′ = 0.99, ε = 0.33 and Reλ = 85). Notice the very good agreement between this model
and the DNS. The second EDQNM calculation (dotted line) used 400 logarithmic
grid points spread over a much broader range of wavenumbers, 0.0025 6 k 6 403.
The energy spectrum was approximated by the more complete spectrum given in
Pope (2000), in which the power law at low wavenumbers was assumed to be k2. The
resulting ρ̃(t) is in reasonably close agreement with the DNS for the first 3–4 eddy
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Figure 6. Isotropic scalar spectra for case (ii). (a) Autocorrelation spectra for Sc = 1, (b) Sc = 1
16

and (c) the scalar covariance correlation spectrum.
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Figure 7. Coherency spectrum ρ(k) for the forced isotropic scalar study, (a) case (i), (b) case (ii).

turnover times following the cessation of scalar forcing, but subsequently reaches a
minimum and then approaches unity at long times. The qualitative difference in the
behaviour of the second EDQNM calculation is due exclusively to the increase in
resolution at low wavenumbers. In the latter calculation, as the scalar decays, the
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Figure 8. Correlation coefficient versus time for two decaying isotropic scalars with Schmidt
numbers of 1 and 1

16
, respectively. Both scalars were coherently forced for 12 eddy turnover times,

and then the forcing was abruptly turned off for the remainder of the calculation. Results from
DNS (dashed line) are shown with two EDQNM calculations that are based on a logarithmic grid
that spans the range 1.51 6 k 6 148 (solid line) and 0.0025 6 k 6 403 (dotted line).

location of the peak of the spectrum moves continuously to smaller wavenumber (i.e.
larger scales). Eventually, when the peak reaches a scale that is sufficiently insensitive
to differential diffusion, the scalars no longer decorrelate faster than their rate of
decay. Consequently, the scalars appear to recorrelate at long times (in fact, they
never decorrelated). This behaviour is not observed in the DNS because of the finite
size of the box (or more precisely, the limited range of scale that can be simulated).
We show this result to highlight the sensitivity of the qualitative behaviour of ρ̃(t) at
long times to the low wavenumber end of the spectrum. The mathematical origin of
this sensitivity is most probably connected to the lack of true self-similarity over all
wavenumbers, as discussed at length by Clark & Zemach (1998).

3.2. Mean gradient

The case of the uniform mean gradient is a more stringent test of the EDQNM
model since the model now includes scalar–velocity correlations in addition to the
scalar–scalar correlations and the source terms are no longer an input from the DNS,
but are predicted by the model. Figures 9 and 10 compare the EDQNM and DNS
values for Φαrms, Φ

β
rms and Φαβrms for cases (i) and (ii), respectively. Figure 11 shows the

equivalent comparison of ρ̃. In general, the agreement is again excellent. Notice now
the agreement at short times is even better than was found for the isotropic scalar.
This is most probably due to the improvement in the representation of the source
terms in the model. Figure 12 shows a comparison of the single-point turbulent flux
(see (2.35) for the definition). The agreement is also very good for all three Schmidt
numbers. Table 5 shows a summary of all of the single-point statistics from the mean
gradient study. The maximum error for all cases is 5%.

The comparison of the scalar–scalar and scalar–velocity spectra for cases (i) and
(ii) is presented in figures 13–15. Once again, the model captures the behaviour very
well. Indeed, figures 13 and 14 look very similar to the equivalent isotropic spectra
(see figures 5 and 6) despite the much more complex transfer that arises with the
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Figure 9. Scalar intensity (a) Φαrms, (b) Φβrms and (c) Φαβrms as a function of dimensionless time for
case (i) of the mean gradient study.
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case (ii) of the mean gradient study.
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with uniform mean gradients. (a) Case (i), (b) case (ii).

Case DNS EDQNM % Error

Φαrms(Sc = 1) 1.1737 1.2297 4.7
Φαrms(Sc = 1

4
) 0.9915 1.0265 3.5

Φαrms(Sc = 1
16

) 0.7700 0.7631 −0.9
Φαβrms (case (i)) 1.0556 1.0986 4.0
Φαβrms (case (ii)) 0.8748 0.8937 2.1
ρ̃ (case (i)) 0.9575 0.9562 −0.1
ρ̃ (case (ii)) 0.8459 0.8511 0.6

−u′3φ′α(Sc = 1) 0.5985 0.6049 1.0

−u′3φ′α(Sc = 1
4
) 0.5674 0.5569 −1.8

−u′3φ′α(Sc = 1
16

) 0.4872 0.4606 −5.0

Table 5. Comparison of averaged statistics from DNS with EDQNM model predictions for all of
the single-point quantities in the mean gradient study.

uniform mean gradient. This can be explained in part by considering the relative
contributions to the overall transfer in the EDQNM model by the various classes of
terms (see § 6.2 for a more in-depth discussion of this point).

Figure 16 shows the coherency spectrum ρ(k). We again observe a greater discrep-
ancy for this statistic. However, the agreement is still reasonably good throughout
the spectrum, and is surprisingly good for case (ii) with the more disparate Schmidt
numbers.

4. Model for the covariance spectrum
An important consideration, from the perspective of practical calculations, is

whether the covariance spectrum E
αβ
φ (k) can be represented purely in terms of an

autocorrelation spectrum. There is no obvious relationship between E
αβ
φ (k) and the
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4
and (c) 1

16
.

Case Φαβrms Φγrms Error

(i) 1.0986 1.0989 0.03%
(ii) 0.8937 0.8946 0.1%
(iii) 0.8627 0.8628 0.005%

Table 6. Comparison of Φirms for the covariance spectrum with the autocorrelation spectrum of
species γ with a molecular diffusivity equal to the arithmetic mean of the molecular diffusivities of
species α and β.

two autocorrelation spectra, Eα
φ(k) and E

β
φ(k), other than the Cauchy–Schwartz in-

equality that must be satisfied and that Eαβ
φ (k) must reduce properly to Eα

φ(k) (or

E
β
φ(k)) when the two scalar diffusivities become equal. However, for the modified

coefficients suggested by UC, it is possible to show that the EDQNM equation for
E
αβ
φ (k) for an isotropic scalar reduces to the EDQNM equation for an autocorrelation

spectrum E
γ
φ(k), where species γ has a molecular diffusivity that equals the arithmetic

mean of the molecular diffusivities of species α and β (i.e. Dγ = (Dα + Dβ)/2, or
equivalently, Scγ = 2/(1/Scα + 1/Scβ)). This correspondence results from having a
purely implicit dependence of the EDQNM expressions for the triple correlations on
the scalar diffusivities.

The exact relationship for the isotropic covariance spectrum is only approximate in
the case of a uniform mean gradient. Consequently, it is worth seeing how well Eγ

φ(k)

approximates Eαβ
φ (k) for this case. Figure 17 shows a comparison of the steady-state
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Figure 13. Scalar spectra for case (i) with the uniform mean gradient. (a) Autocorrelation spectra
for (a) Sc = 1, (b) Sc = 1

4
and (c) the scalar covariance spectrum.

spectra for Eαβ
φ (k) and E

γ
φ(k). The agreement is excellent over the entire spectrum.

Table 6 shows a comparison of the single-point r.m.s. values for the two spectra.
Notice that the maximum relative error for all cases is much less than 1%. The
figures presented in this section strongly suggest that over the range of Schmidt
numbers considered, we can interpret the effects of differential diffusion of inert
species in terms of the ordinary diffusion of an appropriately defined single species.

5. Reynolds number scaling
We now are in a position to consider the dependence of differential diffusion on

the Reynolds number. Earlier studies (e.g. Kerstein et al. 1989; Smith et al. 1995a ,
Nilsen & Kosály 1997; Saylor & Sreenivasan 1998) have consistently shown that the
effect decreases with increasing Reynolds number. Here we address this question for
ρ̃ and ρ(k) using the EDQNM model.

5.1. Scaling for ρ̃

EDQNM calculations of the scalar with a uniform mean gradient were performed at
the Reynolds numbers given in figure 18. We observe (not shown) that ρ̃ approaches
unity with increasing Reynolds number, suggesting we should scale 1 − ρ̃ with the
Reynolds number. Empirically, we find that (1 − ρ̃) ∝ 1/Reλ at high Reλ. This is
evident in figure 19, which shows (1− ρ̃)Reλ as a function of Reλ. Notice that at high
Reynolds numbers this quantity approaches a straight line, confirming the proposed
scaling.

An explanation for this behaviour can be found by considering a simple approxi-
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mation to the scalar spectrum. Batchelor, Howells & Townsend (1959) showed that
the Oboukov–Corrsin k−5/3 spectrum is followed by a k−17/3 range in the so-called
inertial–conductive range. According to the classical scaling argument, this range of
wavenumbers is defined as: kα 6 k 6 kη , where kα ≡ Sc3/4

α kη , and this range exists
only for Scα < 1. A simple (dimensional) scalar spectrum that obeys this scaling can
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be defined as follows:

Eα
φ(k) ≈ Cχαε−1/3k−5/3 exp(−δk/kα)f(ε,Dα, k), (5.1)

where δ is a non-dimensional constant that determines the onset of the exponential
tail at high wavenumbers (in general, we assume δ � 1 and expand the solution to
O(δ)), C is the Oboukov–Corrsin constant,

f(ε,Dα, k) ≡


1, k0 6 k 6 kα,

ε

D3
αk

4
, kα < k < ∞, (5.2)

and k0 is the inverse of the integral scale of the turbulence. In the limit of high
Reynolds number, C = 4

9
ensures that (5.1) is consistent with χα = 2Dα

∫ ∞
0
k2Eα

φ(k) dk.
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Case Equation (5.6) EDQNM model Difference

(i) 0.800 0.816 2%
(ii) 0.471 0.481 2.1%
(iii) 0.800 0.800 0%

Table 7. Comparison of the approximation for gαβ by Yeung (1998) with our EDQNM results.

The simple analytical expression shown in (5.1) enables us to calculate Φαrms and
Φβrms. Furthermore, if we use the approximation discussed in § 4, we can obtain an
expression for Φαβrms, and thereby derive a formula for ρ̃. The resulting expression is

ρ̃ ≈
ρ̃χ

(
1− 6

7

√
15p2/3

Reλ
√
Scαβ

)
(

1− 6

7

√
15p2/3

Reλ
√
Scα

)1/2(
1− 6

7

√
15p2/3

Reλ
√
Scβ

)1/2
, (5.3)

where Reλ ≡ u′2
√

15/νε, Scαβ ≡ 2/(1/Scα + 1/Scβ), ρ̃χ ≡ χαβ/
√
χαχβ and p is the

proportionality constant

p ≡ k0u
′3

ε
. (5.4)

The EDQNM model predicts p = 8
3

at high Reynolds numbers. The coefficient ρ̃χ
is a correlation coefficient for the scalar dissipation. Yeung (1998) has an extensive
discussion of a related coefficient defined as

gαβ ≡ ∇φ′α · ∇φ′β√
∇φ′α · ∇φ′α ∇φ′β · ∇φ′β

, (5.5)

which at steady state he approximates as

gαβ =
2
√
ScαScβ

(Scα + Scβ)
. (5.6)

Table 7 shows a comparison of the EDQNM prediction for gαβ with the approximation
shown in (5.6). The agreement is within 3% for all cases considered. Combining this
approximation for gαβ with the definitions given in (2.2)–(2.4), we conclude that ρ̃χ ≈ 1
and ignore it in what follows.

It is possible to predict the leading-order Reynolds number scaling of (5.3) by
making a Taylor series expansion in powers of 1/Reλ. After some manipulation, it
can be shown that

(1− ρ̃)Reλ ' 3
√

15p2/3

7

(
2√
Scαβ

− 1√
Scα
− 1√

Scβ

)
+ O(Reλ

−1), (5.7)

which is consistent with the scaling observed for the EDQNM model (see figure 19).
It is also worth noting that a similar scaling was predicted by Kerstein et al. (1995).

They defined a difference variable z ≡ φα − φβ and considered the statistics of z′2. If



Differential diffusion of scalars 25

2
0.01

k/k
α

10–5

100

555

10–10

10–15

10–16

0.1 1

(k
/k

α
)5/

3  
E

z
(k

) (
e/

v α
) (

m5 e
)–1

/4

2

(a)

(b)

2

10–5

100

10–10

10–15

Figure 20. Compensated spectrum for z ≡ φα−φβ plotted against k/kα for (a) case (i) and (b) case
(ii) at the Reynolds numbers given in the caption of figure 18. Notice that the curves corresponding
to the different Reynolds numbers collapse onto a single curve in this coordinate.

we again use (5.3) to model z′2, we obtain

z′2 ≡ (Φαrms)
2 + (Φβrms)

2 − 2(Φαβrms)
2

=
6
√

15p2/3

7Reλ

(
2√
Scαβ

− 1√
Scα
− 1√

Scβ

)
3Cχα

2ε1/3k
2/3
0

+ O(Reλ
−2)

= (1− ρ̃)
3Cχα

ε1/3k
2/3
0

+ O(Reλ
−2). (5.8)

Thus, z′2 scales like (1 − ρ̃), approaching zero like Reλ
−1, which is consistent with

their prediction of ReL
−1/2, since Reλ ∝ ReL

1/2.
The numerical values predicted by (5.3) are not in quantitative agreement with the

EDQNM model (e.g. off by factors of 5–10); however, this is not to be expected given
the simple approximation for the scalar spectrum we used (see (5.1)).

5.2. Scaling relationships for scalar spectra

We now consider Reynolds-number scaling relationships for scalar spectra. Yeung
(1998) hypothesized that the scalar spectrum for the concentration difference, z, would
collapse in the inertial range if the compensated spectrum, (k/kα)

5/3Ez(k)(ε/χα)(ν
5ε)−1/4

were plotted against k/kα, where Ez(k) is the spectrum for z, and species α is assumed
to be the more slowly diffusing species. This hypothesis is tested in figure 20, which
shows compensated spectra for cases (i) and (ii) at the four Reynolds numbers given
in figure 18. Notice that the curves collapse in this coordinate over all wavenumbers,
in agreement with Yeung (1998). However, the two curves corresponding to cases
(i) and (ii) do not collapse together; that is, each combination of Schmidt numbers
yields a distinct curve.

Figure 21 shows an equivalent plot of the coherency spectrum as a function of kη,
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the suggested scaling by Yeung. Once again, the curves at different Reynolds numbers
collapse, but the curves for the two cases remain distinct. The results suggest that we
should seek a scaling argument that accounts for the Schmidt-number dependence in
each curve. To that end, Yeung (1998) proposed the following decomposition of the
coherency spectrum

ρ(kη) = 1− f1(kη)f2(Scα, Scβ). (5.9)

The decomposition implies that each portion of the spectrum is affected uniformly
by any changes to the Schmidt number. This hypothesis can be tested directly. If we
define ρ(i)(kη) and ρ(ii)(kη) as the collapsed curves corresponding to cases (i) and (ii),
respectively, in figure 21, then (5.9) implies that the function

Λ =
[1− ρ(i)(kη)]

[1− ρ(ii)(kη)]
=

f2(1,
1
4
)

f2(1,
1
16

)
(5.10)

should be independent of kη. Figure 22 shows a graph of Λ versus kη; it is readily
apparent that Λ is a strong function of wavenumber, implying that the decomposition
shown in (5.9) is not valid. Apparently, an intermediate circumstance arises, in which
we can make the weaker claim

ρ(kη) = 1− f(kη, Scα, Scβ), (5.11)

where f is independent of Reynolds number.

6. Transfer spectra
The agreement between the EDQNM predictions for the scalar spectra and the

DNS provides confidence that the model reliably represents the triple correlations
that lead to transfer of the scalar (principally) from lower to higher wavenumbers. A
natural question to consider is whether the dominant mechanism of transfer is local
or non-local. Local transfer can be represented by a far simpler differential expression
that would eliminate the need for the convolution integral, and thus would be more
efficient to solve. Additionally, the form of the transfer term for anisotropic scalars
involves several classes of terms with widely-varying magnitudes. A second question
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to consider is the relative contribution of the different terms to the overall transfer
function.

The overall transfer function for Eαβ
φ (k), denoted by Trαβ(k), is given by

Trαβ(k) =
k2

4π2

∫ 1

−1

[
−kj

∫ ∫
(Mαβ

j (p, k, q) +M
βα
j (p, k, q)) d̂p d̂q

]
dµ. (6.1)

Equations for Trα(k) and Trβ(k) follow by contracting α or β. The double integral in
(6.1) can be thought of as summing the contributions from all of the possible triads.
Although we can consider all three transfer spectra, hereinafter we will focus on the
one given in (6.1); however, the results for Trα(k) and Trβ(k) are in close qualitative
agreement with Trαβ(k). Thus, all conclusions that we draw hold equally well for
these spectra.

To facilitate making comparisons, it is convenient to define a transfer flux as

Π(k) =

∫ kmax

k

T rαβ(k′) dk′. (6.2)

An important advantage of Π(k) is that it is positive definite for all k.

6.1. Local vs. non-local transfer

Whether the transfer process is local or non-local in nature is a difficult point in the
turbulence literature, because local triadic interactions result in local transfer, whereas
non-local interactions can result in either local or non-local transfer (Domaradzki &
Rogallo 1990; Zhou 1993a,b; Brasseur & Wei 1994). The problem of characterizing
transfer is especially difficult for the case of energy transfer, where interactions
occur among the three velocity modes of the triad; however, for scalar transfer, the
corresponding triads only exchange scalar between two of the three legs of the triad
(the velocity leg serving only to control the rate of exchange). This is illustrated
in figure 23, which shows a schematic of three typical triads. The first represents
nearly equilateral triads that result in local interactions that lead to local transfer.
The second and third examples are of non-local interactions producing local and
non-local transfer, respectively. As can be seen, the signature of non-local transfer
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Figure 23. Schematic of (a) local triadic interaction leading to local transfer, (b) non-local triadic
interaction leading to local transfer and (c) non-local triadic interaction leading to non-local transfer.
Notice that non-local transfer requires that the velocity mode of the triad comes from the high
wavenumber end of the energy spectrum.

will be long skinny triads having an interaction between the velocity at a relatively
high wavenumber with scalar at both low and high wavenumbers. If we can show
that this contribution is relatively small, then we have an intermediate situation in
which non-local triadic interactions lead to local scalar transfer.

The above qualitative arguments suggest that we can gain insight into the question
of local versus non-local transfer by breaking the energy spectrum into different
ranges. Here, we break the spectrum into three different ranges corresponding to k
between the first wavenumber and the Taylor microscale (range 1), k between the
Taylor microscale and the Kolmogorov scale (range 2), and k between the Kolmogorov
scale and kmax. The numerical values for the ranges in dimensionless form are

range 1: 1.51 6 k < 9.05,

range 2: 9.05 6 k < 319.70,

range 3: 319.70 6 k < 386.05.

We recognize from the outset that the above divisions are arbitrary, reflecting the
arbitrariness of the division between ‘local’ and ‘non-local’ transfer. Others such as
Yeung (1996) have used finer-grained divisions to divide the energy. However, the
major qualitative findings will not be affected by the choice of the divisions.

It is now possible to consider the contribution to the total transfer from triads with
energy legs lying within each of the ranges. Based on the above definitions, we define
a fractional contribution to the covariance spectrum flux resulting from each of the
wavenumber bands as

Πm(k) =

∫ kmax

k

T rαβm (k′) dk′

Π(k)
, (6.3)

where Trαβm (k) is the transfer of the covariance spectrum associated with the mth
range (m = 1, 2 or 3) and Πm(k) is the fractional contribution of the mth range to
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Figure 24. Normalized steady state state flux spectra resulting from the three regions of the energy
spectrum for case (i) (note: see (6.3) for the definition of the flux spectrum). (a) Π1(k), (b) Π2(k)
and (c) Π3(k). The dashed line in each graph shows the contribution from non-local transfer, here
defined as triads with the ratio of scalar legs greater than a factor of 5. Vertical lines indicate the
transitions between the different regions. Notice that the range of the ordinate of the bottom graph
is much smaller than the other two graphs.

the flux (note that by definition Π1(k) + Π2(k) + Π3(k) = 1). We further define the
contribution to Πm(k) from non-local interactions, here chosen as triads with the ratio
of the scalar legs that is greater than a factor of 5.

Figures 24 and 25 show the mean gradient results for cases (i) and (ii). At low
wavenumbers, it is clear that Π1(k) and Π2(k) dominate ranges 1 and 2, respectively,
and the contribution from Π3(k) is negligible for both of the cases. Transfer over
these two ranges is controlled principally by the energy within each respective range.
In contrast, transfer within range 3 is predominantly from Π2(k), although there is an
appreciable contribution from Π3(k). It appears that local interactions and hence local
transfer are dominant in ranges 1 and 2, but non-local interactions are important in
range 3.

Next, we consider whether these non-local interactions lead to local or non-local
transfer. According to the qualitative picture shown in figure 23, non-local interactions
can lead to both local and non-local transfer. The signature for non-local scalar
transfer is interactions between an energy leg at relatively high wavenumbers with
scalar legs at low and high wavenumbers, respectively. We examine the importance
of non-local transfer for each Π-group in figures 24 and 25 (dashed lines). Notice
that non-local transfer is negligible in ranges 1 and 2, in agreement with the fact
that local interactions are dominant. Range 3 has a significant contribution from
Π2(k); however, the fraction of the contribution that is non-local is negligible for
both cases. This strongly suggests that non-local interactions leading to local transfer
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Figure 25. Same as figure 24, except for case (ii).

are important. The non-local fraction of Π3(k) in range 3 is appreciable, implying
that there is some non-local transfer in this range.

To summarize, the EDQNM model demonstrates that scalar transfer is dominated
first by local interactions (local transfer) followed by non-local interactions that
lead to local transfer. Non-local interactions that lead to non-local transfer are only
important in range 3. This has important implications for developing simpler spectral
models. For example, there have been a number of spectral energy models based on
local transfer mechanisms (Besnard et al. 1996; Leith 1967). Our results suggest that
their approach can be extended to the scalar spectrum as well, supporting the recent
work by Fox (1995, 1997); however, the significant contribution that we observe
from non-local interactions indicates that the flux at a particular wavenumber k
could depend upon the energy spectrum in the neighbourhood of k (and not solely
the energy at k). Generalizations of local models that preserve their computational
simplicity yet account for these non-local interactions can be easily envisaged. For
example, weighted integrals of the energy spectrum can be substituted for the local
energy value so as to spread the influence of the energy spectrum appropriately.

6.2. Breakdown of interactions

As shown in § 2.2, the presence of the mean scalar gradient introduces several new
interactions into the transfer function M

αβ
i (k, p, q). For the sake of computational

economy, it is again useful to consider the relative contributions of each interaction
to the overall scalar transfer rate. In order to determine which, if any, of the spectral
interactions dominate the transfer of Eαβ

φ (k), it is necessary to break up the equation

for Mαβ
i (k, p, q) into its constitutive parts. Equation (2.30) and table 1 show that

the interactions that compose Mαβ
i (k, p, q) are BαβR, QαQβ , QαR, QβR and RR. To
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facilitate the comparison, we decompose the total scalar flux in the following manner

ΠRR(k) ≡

∫ kmax

k

T r
αβ
RR(k′) dk′

Π(k)
, (6.4)

ΠQR(k) ≡

∫ kmax

k

T r
αβ
QR(k′) dk′

Π(k)
, (6.5)

ΠQQ(k) ≡

∫ kmax

k

T r
αβ
QQ(k′) dk′

Π(k)
, (6.6)

ΠBR(k) ≡

∫ kmax

k

T r
αβ
BR(k′) dk′

Π(k)
, (6.7)

where TrαβRR is the contribution to the overall transfer from the RR terms, TrαβQR(k)

is the contribution from the QαR and QβR terms, TrαβQQ(k) is the contribution from

QαQβ terms, and TrαβBR(k) is the contribution from BαβR terms.
Figure 26 shows the breakdown of the scalar flux as a function of wavenumber

for cases (i) and (ii). The dominant interaction for both cases is BR, followed by
QR, which is significant at low wavenumbers. The contributions from the other
interactions are much smaller, and can be neglected in a simplified spectral model.

6.3. Backscatter coefficient

Fox (1999) extended the spectral relaxation model to account for differential dif-
fusion by introducing backscatter into the original formulation. Fox reasoned that
backscatter is responsible for the inverse cascade of ‘incoherence’ that is initiated at
high wavenumbers by differential diffusion. To account for this, Fox defined a coeffi-
cient that determines the rate of backscatter. Here, we will calculate the backscatter
coefficient using the EDQNM model.

To begin, we first decompose the total transfer function defined in (6.1) into forward
and reverse transfer as follows:

Tr>(k) =
k2

2π2

∫ 1

−1

[
−kj

∫ ∫
Mα

j (p, k, q)H(k − q) d̂p d̂q

]
dµ, (6.8)

Tr<(k) =
k2

2π2

∫ 1

−1

[
−kj

∫ ∫
Mα

j (p, k, q)H(q − k) d̂p d̂q

]
dµ, (6.9)

where Tr>(k) is forward transfer, Tr<(k) is reverse transfer and H(x) is the Heaviside
or unit step function. (Note that all of the discussion will focus on the autocorrelation
transfer spectrum only; however, the concepts can be extended easily to the covari-
ance spectrum.) By definition, we immediately recover that Trα(k) = Tr>(k)+Tr<(k).
The backscatter coefficient is then defined in terms of the reverse transfer func-
tion (Fox 1999)

βD ≡
−0.5

∫ ∞
kD

T r<(k) dk∫ ∞
kD

Eα
φ(k) dk

, (6.10)
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Figure 26. Fractional contribution of the different spectral interactions to the total flux of the
scalar covariance spectrum for (a) case (i) and (b) case (ii).

where kD defines the beginning of the dissipation range. Classical scaling yields
kD = kα; however, Fox & Yeung (1999) propose the following implicit formula for kD(∫ ∞

kD

Eα
φ(k) dk

)(∫ ∞
kD

k4Eα
φ(k) dk

)
(∫ ∞

kD

k2Eα
φ(k) dk

)2
= Cd, (6.11)

where kD is adjusted until (6.11) is satisfied. The value of Cd is uncertain, with Fox
& Yeung (1999) suggesting 5

3
and Vedula, Yeung & Fox (2001) suggesting 3. The

quantitative values are sensitive to the choice of Cd, but the trends are relatively
insensitive. For the sake of this discussion, we have fixed its value at Cd = 5

3
.

The results for βD obtained from the EDQNM model with standard and UC-
modified coefficients are summarized in table 8. Results from DNS are shown for
comparison. It is apparent that while the UC-modified EDQNM model obtains the



Differential diffusion of scalars 33

Schmidt number Modified Standard DNS

1 3.00 3.00 8.00

1
4

2.70 1.45 3.50

1
16

3.10 0.62 1.57

Table 8. Comparison of the βD for the autocorrelation spectrum predicted by the UC-modified
EDQNM model, the standard EDQNM model and DNS at the specified values of Schmidt
number.

correct order of magnitude, it does not capture the Schmidt-number dependence
observed in the DNS. Fox & Yeung (1999) found the coefficient to be proportional to
Sc1/2

α , in agreement with our DNS, but the UC-modified model predicts essentially no
dependence on Schmidt number. It is interesting to note that the standard EDQNM
model captures the Schmidt number dependence more accurately.

A closer examination of the numerator and denominator of βD (see (6.10)) shows
that most of the error is associated with the reverse transfer function. Figure 27 shows
comparisons of the two EDQNM models with the DNS. Notice that the standard
model predicts the trend with Schmidt number more consistently.

Even though the modified EDQNM model does not capture backscatter as well
as the standard (unrealizable) model, we see in figure 28 that the overall transfer
is very well described by the modified model. This figure shows a comparison of
the total transfer function at three Schmidt numbers with DNS. Apparently, the
modifications proposed by UC to eliminate the realizability problem do adversely
affect the prediction of backscatter, but not the prediction of total transfer.

7. Conclusions
The EDQNM theory has been used to investigate differential diffusion of non-

reacting species in stationary isotropic turbulence. The advantage of a spectral de-
scription of differential diffusion is that the effects due to interactions between the
hydrodynamic and scalar fields at different length scales are inherently accounted
for. Several single- and two-point statistics were used to examine both the transient
and steady-state behaviour of the scalar field. From these statistics, we observed that
differential diffusion is a molecular phenomenon that originates at the smallest length
scales and whose effects are more pronounced as the ratio of the Schmidt numbers
increases. We have seen that differential diffusion acts as a sink of coherency at the
small scales, causing them to decorrelate very quickly, whereas the mean scalar gradi-
ent acts as a source term for coherency at the large scales. Thus, there is a competition
between the source and sink of coherency, resulting in a mixture that depends on the
wavenumber, the Reynolds number and the two scalar Schmidt numbers.

Comparisons of the modified EDQNM model with DNS were presented for a
broad range of Schmidt numbers. Overall, the agreement for single-point and spectral
statistics, both with and without a uniform mean gradient, was very good. A slight
modification of one of the coefficients, c2T , improved the performance of the model for
the scalar with the mean gradient. The least agreement was found for the coherency
spectrum, ρ(k). As this quantity involves a ratio of scalar spectra, it is a particularly
sensitive test. Thus, the acceptable agreement achieved with this statistic implies the
model for the individual spectra is performing very well. We also showed that the
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scalar covariance spectrum can be modelled by the autocorrelation of a third scalar
with a molecular diffusivity equal to the arithmetic mean of the diffusivities of the
original two scalars. Single-point statistics were predicted to less than 1% error by
this approximation.
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The good agreement between the model and simulations motivated us to use the
model to look more closely at the scaling of differential diffusion with Reynolds
number. The EDQNM model predicts (1− ρ̃) ∝ Re−1

λ , in agreement with the scaling

argument put forth by Kerstein et al. (1995) for z′2. Moreover, we showed that the
result can be reproduced from a simplified scalar spectrum containing an Oboukov–
Corrsin inertial range followed by the Batchelor inertial–conductive range.

The scaling proposed by Yeung (1998), was shown to collapse the spectra Ez(k/kα)
and ρ(kη) onto a single curve, independent of the value of the Reynolds number
(note that species α is assumed to be the more slowly diffusing species). This re-
markable result implies an important reduction in the parameter space. However,
the further reduction of ρ(kη) into a Schmidt-number-dependent function and a
wavenumber-dependent function was not supported by the EDQNM results. Instead,
an intermediate result is achieved that allows the elimination of the dependence on
the Reynolds number, but requires a more complicated functional dependence on the
two Schmidt numbers.

Local versus non-local transfer was investigated by decomposing the energy spec-
trum in the transfer function into three different ranges of wavenumbers. The results
indicate that scalar transfer is dominated first by local interactions (local transfer),
followed by non-local interactions that lead to local transfer. Non-local interactions
that lead to non-local transfer are significant only at high wavenumbers. A compar-
ison of the different spectral interactions in the transfer function showed that RB
interactions were dominant over the entire spectrum. Both of these results have im-
portant implications for developing simpler spectral models. For example, local and
non-local interactions leading to predominantly local transfer implies that the com-
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putationally expensive convolution integrals in the EDQNM model can be simplified.
Additionally, the dominanance of RB interactions suggests that the other interactions
can be neglected, thereby further reducing the cost of the calculation.

Finally, our EDQNM calculations of the backscatter coefficient βD , defined by Fox
(1999) to account for the inverse cascade of incoherence in his model, were shown
not to capture the Schmidt number dependence found in the DNS. The standard
(unrealizable) EDQNM model does a better job. This suggests that the modifications
of the EDQNM model, required to fix the realizability problem, have compromised
the model’s prediction of the split between forward and reverse transfer. It should be
emphasized that a self-consistent EDQNM model for the covariance spectrum cannot
be obtained without altering the autocorrelation spectrum in the manner suggested
by UC. Nevertheless, it is encouraging that the total transfer spectrum continues to
show excellent agreement with DNS over a broad range of Schmidt numbers.
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